Microcomputer emerges

9:56 AM 0 Comments

The advent of the microprocessor and solid-state memory made home computing affordable. Early hobby microcomputer systems such as the Altair 8800 and Apple I introduced around 1975 marked the release of low-cost 8-bit processor chips, which had sufficient computing power to be of interest to hobby and experimental users. By 1977 pre-assembled systems such as the Apple II, Commodore PET, and TRS-80 (later dubbed the "1977 Trinity" by Byte Magazine) began the era of mass-market home computers; much less effort was required to obtain an operating computer, and applications such as games, word processing, and spreadsheets began to proliferate. Distinct from computers used in homes, small business systems were typically based on CP/M, until IBM introduced the IBM-PC, which was quickly adopted. The PC was heavily cloned, leading to mass production and consequent cost reduction throughout the 1980s. This expanded the PCs presence in homes, replacing the home computer category during the 1990s and leading to the current monoculture of architecturally identical personal computers.


Micral N

12:14 PM 0 Comments

In France, the company R2E (Renationalisation et Etudes Electronics) formed by two former engineers of the Intertechnique company, André Truong Trong Thi and François Gernelle introduced in February 1973 a microcomputer, the Micral N based on the Intel 8008.[8] Originally, the computer had been designed by Gernelle, Lacombe, Beckmann and Benchitrite for the Institut National de la Recherche Agronomique to automate hygrometric measurements. The Micral N cost a fifth of the price of a PDP-8, about 8500FF ($1300). The clock of the Intel 8008 was set at 500kHz, the memory was 16 kilobytes. A bus, called Pluribus was introduced and allowed connection of up to 14 boards. Different boards for digital I/O, analog I/O, memory, floppy disk were available from R2E. The Micral operating system was initially called Sysmic, and was later renamed Prologue. R2E was absorbed by Groupe Bull in 1978. Although Groupe Bull continued the production of Micral computers, it was not interested in the Personal Computer market. and Micral computers were mostly confined to highway toll gates (where they remained in service until 1992) and similar niche markets.


Altair 8800 and IMSAI 8080

10:43 AM 0 Comments

Development of the single-chip microprocessor was an enormous catalyst to the popularization of cheap, easy to use, and truly personal computers. The Altair 8800, introduced in a Popular Electronics magazine article in the January 1975 issue, at the time set a new low price point for a computer, bringing computer ownership to an admittedly select market in the 1970s. This was followed by the IMSAI 8080 computer, with similar abilities and limitations. The Altair and IMSAI were essentially scaled-down minicomputers and were incomplete: to connect a keyboard or teletype to them required heavy, expensive "peripherals". These machines both featured a front panel with switches and lights, which communicated with the operator in binary. To program the machine after switching it on the bootstrap loader program had to be entered, without error, in binary, then a paper tape containing a BASIC interpreter loaded from a paper-tape reader. Keying the loader required setting a bank of eight switches up or down and pressing the "load" button, once for each byte of the program, which was typically hundreds of bytes long. The computer could run BASIC programs once the interpreter had been loaded.

1975: Altair 8800.
The MITS Altair, the first commercially successful microprocessor kit, was featured on the cover of Popular Electronics magazine in January 1975. It was the world's first mass-produced personal computer kit, as well as the first computer to use an Intel 8080 processor. It was a commercial success with 10,000 Altairs being shipped. The Altair also inspired the software development efforts of Paul Allen and his high school friend Bill Gates who developed a BASIC interpreter for the Altair, and then formed Microsoft.
The MITS Altair 8800 effectively created a new industry of microcomputers and computer kits, with many others following, such as a wave of small business computers in the late 1970s based on the Intel 8080, Zilog Z80 and Intel 8085 microprocessor chips. Most ran the CP/M-80 operating system developed by Gary Kildall at Digital Research. CP/M-80 was the first popular microcomputer operating system to be used by many different hardware vendors, and many software packages were written for it, such as WordStar and dBase II.
Many hobbyists during the mid 1970s designed their own systems, with various degrees of success, and sometimes banded together to ease the job. Out of these house meetings the Homebrew Computer Club developed, where hobbyists met to talk about what they had done, exchange schematics and software, and demonstrate their systems. Many people built or assembled their own computers as per published designs. For example, many thousands of people built the Galaksija home computer later in the early 80s.
It was arguably the Altair computer that spawned the development of Apple, as well as Microsoft which produced and sold the Altair BASIC programming language interpreter, Microsoft's first product. The second generation of microcomputers, those that appeared in the late 1970s, sparked by the unexpected demand for the kit computers at the electronic hobbyist clubs, were usually known as home computers. For business use these systems were less capable and in some ways less versatile than the large business computers of the day. They were designed for fun and educational purposes, not so much for practical use. And although you could use some simple office/productivity applications on them, they were generally used by computer enthusiasts for learning to program and for running computer games, for which the personal computers of the period were less suitable and much too expensive. For the more technical hobbyists home computers were also used for electronics interfacing, such as controlling model railroads, and other general hobbyist pursuits.


Mainframes and minicomputers

8:20 AM 0 Comments

Before the introduction of the microprocessor in the early 1970s, computers were generally large, costly systems owned by large institutions: corporations, universities, government agencies, and the like. Users—who were experienced specialists—did not usually interact with the machine itself, but instead prepared tasks for the computer on off-line equipment, such as card punches. A number of assignments for the computer would be gathered up and processed in batch mode. After the jobs had completed, users could collect the output printouts and punched cards. In some organizations it could take hours or days between submitting a job to the computing center and receiving the output.
A more interactive form of computer use developed commercially by the middle 1960s. In a time-sharing system, multiple teletype terminals let many people share the use of one mainframe computer processor. This was common in business applications and in science and engineering


8:53 AM 0 Comments

At the other end of the computing spectrum from the microcomputers, the powerful supercomputers of the era also used integrated circuit technology. In 1976 the Cray-1 was developed by Seymour Cray, who had left Control Data in 1972 to form his own company. This machine, the first supercomputer to make vector processing practical, had a characteristic horseshoe shape, to speed processing by shortening circuit paths. Vector processing, which uses one instruction to perform the same operation on many arguments, has been a fundamental supercomputer processing method ever since. The Cray-1 could calculate 150 million floating point operations per second (150 megaflops). 85 were shipped at a price of $5 million each. The Cray-1 had a CPU that was mostly constructed of SSI and MSI ECL ICs.


Fourth generation

9:31 AM 0 Comments

The basis of the fourth generation was the invention of the microprocessor by a team at Intel.
Unlike third generation minicomputers, which were essentially scaled down versions of mainframe computers, the fourth generation's origins are fundamentally different. Microprocessor-based computers were originally very limited in their computational ability and speed, and were in no way an attempt to downsize the minicomputer. They were addressing an entirely different market.
Although processing power and storage capacities have grown beyond all recognition since the 1970s, the underlying technology of large-scale integration (LSI) or very-large-scale integration (VLSI) microchips has remained basically the same, so it is widely regarded that most of today's computers still belong to the fourth generation.


A typical Busicom desk calculator

5:35 PM 0 Comments

But a new Intel employee (Ted Hoff) convinced Busicom to instead accept a general purpose computer chip which, like all computers, could be reprogrammed for many different tasks (like controlling a keyboard, a display, a printer, etc.). Intel argued that since the chip could be reprogrammed for alternative purposes, the cost of developing it could be spread out over more users and hence would be less expensive to each user. The general purpose computer is adapted to each new purpose by writing a program which is a sequence of instructions stored in memory (which happened to be Intel's forte). Busicom agreed to pay Intel to design a general purpose chip and to get a price break since it would allow Intel to sell the resulting chip to others. But development of the chip took longer than expected and Busicom pulled out of the project. Intel knew it had a winner by that point and gladly refunded all of Busicom's investment just to gain sole rights to the device which they finished on their own.
Thus became the Intel 4004, the first microprocessor (uP). The 4004 consisted of 2300 transistors and was clocked at 108 kHz (i.e., 108,000 times per second). Compare this to the 42 million transistors and the 2 GHz clock rate (i.e., 2,000,000,000 times per second) used in a Pentium 4. One of Intel's 4004 chips still functions aboard the Pioneer 10 spacecraft, which is now the man-made object farthest from the earth. Curiously, Busicom went bankrupt and never ended up using the ground-breaking microprocessor.
Intel followed the 4004 with the 8008 and 8080. Intel priced the 8080 microprocessor at $360 dollars as an insult to IBM's famous 360 mainframe which cost millions of dollars. The 8080 was employed in the MITS Altair computer, which was the world's first personal computer (PC). It was personal all right: you had to build it yourself from a kit of parts that arrived in the mail. This kit didn't even include an enclosure and that is the reason the unit shown below doesn't match the picture on the magazine cover.


The original IBM Personal Computer (PC)

7:35 AM 0 Comments

This transformation was a result of the invention of the microprocessor. A microprocessor (uP) is a computer that is fabricated on an integrated circuit (IC). Computers had been around for 20 years before the first microprocessor was developed at Intel in 1971. The micro in the name microprocessor refers to the physical size. Intel didn't invent the electronic computer. But they were the first to succeed in cramming an entire computer on a single chip (IC). Intel was started in 1968 and initially produced only semiconductor memory (Intel invented both the DRAM and the EPROM, two memory technologies that are still going strong today). In 1969 they were approached by Busicom, a Japanese manufacturer of high performance calculators (these were typewriter sized units, the first shirt-pocket sized scientific calculator was the Hewlett-Packard HP35 introduced in 1972). Busicom wanted Intel to produce 12 custom calculator chips: one chip dedicated to the keyboard, another chip dedicated to the display, another for the printer, etc. But integrated circuits were (and are) expensive to design and this approach would have required Busicom to bear the full expense of developing 12 new chips since these 12 chips would only be of use to them.