This blog about Computer History

Thursday, March 1, 2012

The 5¼-inch mini floppy


In a 1976 meeting, An Wang of Wang Laboratories informed Shugart Associates' Jim Adkinson and Don Massaro, that the 8-inch format was simply too large for the desktop word processing machines he was developing at the time. Adkinson and Massaro proposed a 5¼-inches wide format which Wang accepted. Shugart Associates then developed a new drive of this size storing 98.5 KB later increased to 110 KB by adding 5 tracks. The 5¼-inch drive was considerably less expensive than 8-inch drives from IBM, and soon started appearing on CP/M machines. At one point Shugart was producing 4,000 drives a day. By 1978 there were more than 10 manufacturers producing 5¼-inch floppy drives, in competing physical disk formats: hard-sectored (90 KB) and soft-sectored (110 KB). The 5¼-inch formats quickly displaced the 8-inch for most applications, and the 5¼-inch hard-sectored disk format eventually disappeared.
Apple introduced the 5¼-inch Disk II for the Apple II in 1978, using GCR encoding to store 35 tracks of 13 sectors of 256 bytes (113KB). An upgrade to a more sophisticated GCR scheme in 1980 increased track capacity to 16 sectors (140KB for the disk).
These early drives read only one side of the disk, leading to the popular budget approach of cutting a second write-enable slot and index hole into the carrier envelope and flipping it over (thus, the “flippy disk”) to use the other side for additional storage. This was considered risky by some, for the reason that single sided disks would only be certified by the manufacturer for single sided use. In reality, since some single-head floppy drives had their read/write heads on the bottom and some had them on the top, disk manufacturers routinely certified both sides of disks for use, thus the method was perfectly safe. An alternate reasoning was that when flipped the disk would spin in the opposite direction inside its cover, so some of the dirt that had been collected by the fabric lining in the previous rotations would be picked up by the disk and dragged past the read/write head.
Tandon introduced a double-sided drive in 1978, doubling the capacity, and a new “double density” format increased it again, to 360 KB


For most of the 1970s and 1980s the floppy drive was the primary storage device for word processors and microcomputers. Since these machines had no hard drive, the OS was usually booted from one floppy disk, which was then removed and replaced by another one containing the application. Some machines using two disk drives (or one dual drive) allowed the user to leave the OS disk in place and simply change the application disks as needed, or to copy data from one floppy to another. In the early 1980s, “quad density” 96-track-per-inch drives appeared, increasing the capacity to 720 KB. RX50 was another proprietary format, used by Digital Equipment Corporation's Rainbow-100, DECmate-II and Pro-350. It held 400 KB[ on a single side by using 96 tracks per inch and cramming 10 sectors per track.
White 5.25-inch floppy disk.
Floppy disks were supported on IBMs PC-DOS and Microsoft's MS-DOS from their beginning on the original IBM PC. With version 1.0 of DOS (1981) only single sided 160 KB floppies were supported. Version 1.1 the next year saw support expand to double-sided, 320 KB disks. Finally in 1983 DOS 2.0 supported 9 sectors per track rather than 8, providing 180 KB on a (formatted) single-sided disk and 360 KB on a double-sided.
In 1984, along with the IBM PC/AT, the high density disk appeared, which used 96 tracks per inch combined with a higher density magnetic media to provide 1,200 KB of storage (formally referred to as 1.2 megabytes). Since the usual (very expensive) hard disk held 10–20 megabytes at the time, this was considered quite spacious. High-density drives could also read and write to double-density disks, allowing an easy upgrade path.
Except for labelling, 5¼-inch high-density disks were externally identical to their double-density counterparts. This led to an odd situation wherein the drive itself was unable to determine the density of the disk inserted except by reading the disk media to determine the format. It was therefore possible to use a high-density drive to format a double-density disk to the higher capacity. This usually appeared to work (sometimes reporting a small number of bad sectors) — at least for a time. The problem was that the high-density format was made possible by the creation of a new high-coercivity oxide coating (after soft-sector formatting became standard, previous increases in density were largely enabled by improvements in head technology; up until that point, the media formulation had essentially remained the same since 1976). In order to format or write to this high-coercivity media, the high-density drive switched its heads into a mode using a stronger magnetic field. When these stronger fields were written onto a double-density disk (having lower coercivity media), the strongly magnetized oxide particles would begin to affect the magnetic charge of adjacent particles. The net effect is that the disk would begin to erase itself. On the other hand, the opposite procedure (attempting to format an HD disk as DD) would fail almost every time, as the high-coercivity media would not retain data written by the low-power DD field. High-density 3½-inch disks avoided this problem by the addition of a hole in the disk cartridge so that the drive could determine the appropriate density.
By the end of the 1980s, the 5¼-inch disks had been superseded by the 3½-inch disks. Though 5¼-inch drives were still available, as were disks, they faded in popularity as the 1990s began. The main community of users was primarily those who still owned '80s legacy machines (PCs running MS-DOS or home computers) that had no 3½-inch drive; the advent of Windows 95 (not even sold in stores in a 5¼-inch version; a coupon had to be obtained and mailed in) and subsequent phaseout of standalone MS-DOS with version 6.22 forced many of them to upgrade their hardware. On most new computers the 5¼-inch drives were optional equipment. By the mid-1990s the drives had virtually disappeared as the 3½-inch disk became the predominant floppy disk.

No comments: