8-bit designs

10:04 AM 0 Comments


The Intel 4004 was followed in 1972 by the Intel 8008, the world's first 8-bit microprocessor. The 8008 was not, however, an extension of the 4004 design, but instead the culmination of a separate design project at Intel, arising from a contract with Computer Terminals Corporation, of San Antonio TX, for a chip for a terminal they were designing the Datapoint 2200 — fundamental aspects of the design came not from Intel but from CTC. In 1968, CTC's Austin O. “Gus” Roche developed the original design for the instruction set and operation of the processor. In 1969, CTC contracted two companies, Intel and Texas Instruments, to make a single-chip implementation, known as the CTC 1201In late 1970 or early 1971, TI dropped out being unable to make a reliable part. In 1970, with Intel yet to deliver the part, CTC opted to use their own implementation in the Datapoint 3300, using traditional TTL logic instead (thus the first machine to run “8008 code” was not in fact a microprocessor at all!). Intel's version of the 1201 microprocessor arrived in late 1971, but was too late, slow, and required a number of additional support chips. CTC had no interest in using it. CTC had originally contracted Intel for the chip, and would have owed them $50,000 for their design work To avoid paying for a chip they did not want (and could not use), CTC released Intel from their contract and allowed them free use of the desig Intel marketed it as the 8008 in April, 1972, as the world's first 8-bit microprocessor. It was the basis for the famous "Mark-8" computer kit advertised in the magazine Radio-Electronics in 1974.


The 8008 was the precursor to the very successful Intel 8080 (1974), which offered much improved performance over the 8008 and required fewer support chips, Zilog Z80 (1976), and derivative Intel 8-bit processors. The competing Motorola 6800 was released August 1974 and the similar MOS Technology 6502 in 1975 (designed largely by the same people). The 6502 rivaled the Z80 in popularity during the 1980s.
A low overall cost, small packaging, simple computer bus requirements, and sometimes the integration of extra circuitry (e.g. the Z80's built-in memory refresh circuitry) allowed the home computer "revolution" to accelerate sharply in the early 1980s. This delivered such inexpensive machines as the Sinclair ZX-81, which sold for US$99.
The Western Design Center, Inc. (WDC) introduced the CMOS 65C02 in 1982 and licensed the design to several firms. It was used as the CPU in the Apple IIe and IIc personal computers as well as in medical implantable grade pacemakers and defibrilators, automotive, industrial and consumer devices. WDC pioneered the licensing of microprocessor designs, later followed by ARM and other microprocessor Intellectual Property (IP) providers in the 1990s.
Motorola introduced the MC6809 in 1978, an ambitious and thought-through 8-bit design source compatible with the 6800 and implemented using purely hard-wired logic. (Subsequent 16-bit microprocessors typically used microcode to some extent, as CISC design requirements were getting too complex for purely hard-wired logic only.)
Another early 8-bit microprocessor was the Signetics 2650, which enjoyed a brief surge of interest due to its innovative and powerful instruction set architecture.
A seminal microprocessor in the world of spaceflight was RCA's RCA 1802 (aka CDP1802, RCA COSMAC) (introduced in 1976), which was used onboard the Galileo probe to Jupiter (launched 1989, arrived 1995). RCA COSMAC was the first to implement CMOS technology. The CDP1802 was used because it could be run at very low power, and because a variant was available fabricated using a special production process (Silicon on Sapphire), providing much better protection against cosmic radiation and electrostatic discharges than that of any other processor of the era. Thus, the SOS version of the 1802 was said to be the first radiation-hardened microprocessor.
The RCA 1802 had what is called a static design, meaning that the clock frequency could be made arbitrarily low, even to 0 Hz, a total stop condition. This let the Galileo spacecraft use minimum electric power for long uneventful stretches of a voyage. Timers and/or sensors would awaken/improve the performance of the processor in time for important tasks, such as navigation updates, attitude control, data acquisition, and radio communication.

Hasitha Helappriya

Some say he’s half man half fish, others say he’s more of a seventy/thirty split. Either way he’s a fishy bastard.

0 comments: